Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les bases de la régression linéaire et la façon de résoudre les problèmes d'estimation en utilisant les moindres carrés et la notation matricielle.
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.
Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.
S'insère dans le compromis entre la flexibilité du modèle et la variation des biais dans la décomposition des erreurs, la régression polynomiale, le KNN, et la malédiction de la dimensionnalité.
Explore l'apprentissage supervisé en mettant l'accent sur les méthodes de régression, y compris l'ajustement des modèles, la régularisation, la sélection des modèles et l'évaluation du rendement.
Introduit les bases de l'apprentissage supervisé, en mettant l'accent sur la régression logistique, la classification linéaire et la maximisation de la probabilité.
Couvre la décomposition des erreurs, la régression polynomiale et les voisins K les plus proches pour la modélisation flexible et les prédictions non linéaires.