Explore le bruit d'échappement dans la neuroscience computationnelle, couvrant l'intensité stochastique, les intervalles d'intercirculation, les fonctions de vraisemblance, la comparaison des modèles de bruit, et les codes de vitesse par rapport aux codes temporels.
Couvre les techniques de traitement de l'image, y compris l'ajout de bruit, le filtrage et l'amélioration de l'image à l'aide de divers filtres et outils.
Explore la modélisation de données in vitro pour les neurosciences informatiques, y compris la prédiction de la tension sous-seuil et des temps de pointe.
Explore le bruit dans l'électronique, couvrant la puissance moyenne, le rapport signal/bruit, les signaux déterministes et aléatoires et l'amplification du bruit.
Comparer les modèles de bruit diffuseur et de bruit d'échappement dans les neurosciences informatiques, discuter de la simulation, du calcul et de l'ajustement du modèle.