Explore l'optimalité dans la théorie de la décision et l'estimation impartiale, en mettant l'accent sur la suffisance, l'exhaustivité et les limites inférieures du risque.
Explore l'estimation maximale de la probabilité, couvrant les hypothèses, les propriétés, la distribution, l'estimation du rétrécissement et les fonctions de perte.
Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
Explore la méthode des moments, le compromis biais-variance, la cohérence, le principe de plug-in et le principe de vraisemblance dans lestimation de point.
Explore l'application de l'algèbre linéaire dans la science des données, couvrant la réduction de la variance, la théorie de la distribution des modèles et les estimations du maximum de vraisemblance.