La collaboration dans le domaine de la science des données
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Présente des outils collaboratifs de science des données comme les carnets Jupyter, Docker et Git, mettant l'accent sur la version des données et la conteneurisation.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Se concentre sur le déploiement de certificats SSL pour l'hébergement Web ENAC, couvrant la génération de certificats, le débogage et la gestion de livres de lecture Ansible.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Couvre les cadres de données Spark, les collections distribuées de données organisées en colonnes nommées, et les avantages de les utiliser sur les DDR.
Explore l'importance de la reproductibilité dans la science des données et présente Renku, une plate-forme pour la gestion de projets axés sur les données.