Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit l'analyse des composantes principales, en mettant l'accent sur la maximisation de la variance dans les combinaisons linéaires pour résumer efficacement les données.
Couvre les vecteurs aléatoires, la distribution articulaire, les fonctions de densité conditionnelle, l'indépendance, la covariance, la corrélation et l'attente conditionnelle.
Explore les modes de convergence des probabilités et des statistiques, illustre les concepts avec des exemples et discute du théorème de la continuité.
Couvre les copules, le théorème de Sklar, les méta distributions et diverses mesures de dépendance comme les corrélations de rang et les coefficients de dépendance de la queue.
Couvre les distributions conditionnelles et les corrélations dans les statistiques multivariées, y compris la variance partielle et la covariance, avec les applications aux distributions non normales.
Explore la covariance, la dépendance statistique, la relation éducation-fertilité, les tests d'hypothèse et les statistiques de comparaison pour des résultats continus.