Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la distribution 3D des galaxies, des amas de galaxies et de l'arrière-plan cosmique des micro-ondes, éclairant les contenus et les propriétés de l'univers observable.
Introduit des méthodes de regroupement hiérarchique et k-means, en discutant des approches de construction, des fonctions de liaison, de la méthode de Ward, de l'algorithme Lloyd et de k-means++.
Explore la prise de décision dans l'incertitude, en se concentrant sur la thèse de doctorat posthume de Kilian Schindler sur l'optimisation stochastique évolutive et la réduction de scénarios.
Introduit le Support Vector Clustering (SVC) à l'aide d'un noyau gaussien pour la cartographie spatiale des caractéristiques de grande dimension et explique ses contraintes et Lagrangian.
Explore Transductive Support Vector Machine pour le clustering semi-supervisé, visant une erreur nulle sur les points étiquetés et les points non étiquetés bien séparés.
Explore le modèle de bloc stochastique, le regroupement spectral et la compréhension non paramétrique des modèles de bloc, en mettant l'accent sur les mesures pour comparer les modèles graphiques.