Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'analyse causale des données d'observation, des pièges, des outils permettant de tirer des conclusions valables et d'aborder les variables confusionnelles.
Explore la découverte causale à l'aide de modèles variables latents, en mettant l'accent sur les défis et les solutions pour déduire les relations causales à partir de données non gaussiennes.
Examine la distinction entre association et lien de causalité dans l'analyse statistique, en soulignant les limites de l'association dans l'inferration de lien de causalité.
Examine l'inférence causale, en soulignant l'importance de s'engager dans une ontologie pour tirer des inférences causales et choisir des estimands appropriés.
Examine la dépendance statistique, la confusion et les méthodes d'inférence causale, en mettant l'accent sur la distinction entre les approches existantes et nouvelles.
Étudier les limites des effets causaux en utilisant des paramètres de sensibilité à l'échelle de la différence de risque, en abordant les limites et en proposant de nouvelles approches.
Explore l'évaluation de la réglementation du marché, en se concentrant sur le trading à haute fréquence et l'impact des changements réglementaires sur la liquidité et la qualité du marché.