Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.
Couvre la vectorisation en Python en utilisant Numpy pour un calcul scientifique efficace, en soulignant les avantages d'éviter les boucles et de démontrer des applications pratiques.
Se concentre sur la modélisation numérique des processus atmosphériques pour prédire les phénomènes météorologiques et climatiques, couvrant les concepts et les méthodes clés.
Couvre l'analyse des erreurs, la stabilité et le pas de temps adaptatif dans les méthodes numériques, y compris l'ordre de convergence et les points d'équilibre.
Couvre les méthodes numériques pour résoudre les équations différentielles et leur analyse de stabilité, en se concentrant sur le calcul des erreurs et les applications pratiques en ingénierie et en science.