Explore la conservation de l'énergie mécanique et la stabilité des points d'équilibre dans les systèmes dynamiques, illustrés par des exemples comme le pendule mathématique et le mouvement de boucle.
Couvre la stabilité de Lyapunov dans les systèmes dynamiques, en se concentrant sur la stabilité asymptotique globale et la mise en œuvre pratique grâce à une programmation semi-définie.