Explorer l'analyse de la pollution atmosphérique à l'aide de données sur le vent, de distributions de probabilités et de modèles de trajectoire pour l'évaluation de la qualité de l'air.
Explore l'échantillonnage d'importance à travers un changement de variable pour accélérer les calculs de Monte Carlo et discute de l'impact sur les estimations stochastiques et l'échelle de variance.
Explore les caractéristiques de la distribution normale, les scores Z, la probabilité dans les statistiques inférentielles, les effets d'échantillon et l'approximation de la distribution binomiale.
Explore des méthodes numériques stochastiques efficaces pour la modélisation et l'apprentissage, couvrant des sujets comme le moteur d'analyse et les inhibiteurs de la kinase.
Couvre le concept d'opérateurs pour le transfert de données et la manipulation entre les activités, y compris l'agrégation, la distribution et les opérateurs sociaux.