Couvre la classification des images, le clustering et les techniques d'apprentissage automatique telles que la réduction de la dimensionnalité et l'apprentissage par renforcement.
Explique le regroupement des moyennes k, en attribuant des points de données à des grappes en fonction de la proximité et en minimisant les distances carrées à l'intérieur des grappes.
Couvre la théorie et la pratique des algorithmes de regroupement, y compris PCA, K-means, Fisher LDA, groupement spectral et réduction de dimensionnalité.
Couvre les techniques de réduction de dimensionnalité telles que PCA et LDA, les méthodes de clustering, l'estimation de la densité et la représentation des données.
Explore le centroïde, le médioïde, l'homogénéité, la séparabilité dans le clustering, l'évaluation de la qualité, la stabilité, les connaissances d'experts et les algorithmes de clustering.