Explore la convergence des puissances de la matrice d'adjacence et du théorème de consensus pour les matrices primitives et stochastiques, en mettant l'accent sur les propriétés spectrales et les systèmes de contrôle en réseau.
Couvre les valeurs propres, les vecteurs propres et la séquence de Fibonacci, en explorant leurs propriétés mathématiques et leurs applications pratiques.
Explore les valeurs propres et les vecteurs propres des chaînes de Markov, en se concentrant sur les taux de convergence et les propriétés matricielles.
Explore la diagonalisation des matrices à travers des valeurs propres et des vecteurs propres, en soulignant l'importance des bases et des sous-espaces.
Couvre la théorie et les exemples de matrices de diagonalisation, en se concentrant sur les valeurs propres, les vecteurs propres et lindépendance linéaire.