Explore les valeurs propres, les vecteurs propres et les méthodes de résolution de systèmes linéaires en mettant l'accent sur les erreurs d'arrondi et les matrices de préconditionnement.
Explore la transformation de base, les valeurs propres et les opérateurs linéaires dans les espaces intérieurs des produits, en soulignant leur importance dans la mécanique quantique.
Couvre l'exponentielle des opérateurs et des matrices, les propriétés de commutation, la forme normale de la Jordanie et les concepts d'algèbre linéaire liés aux opérateurs linéaires et aux problèmes de valeurs propres.
Explore les valeurs propres et les vecteurs propres dans l'algèbre linéaire 3D, couvrant les polynômes caractéristiques, la stabilité sous les transformations, et les racines réelles.