Analytique rapide et efficace pour les mégadonnées : les perspectives multidimensionnelles
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Présente la programmation LabVIEW, couvrant la gestion de la mémoire, les types de données et les concepts de programmation parallèle, avec des démonstrations pratiques.
Présente les bases de la programmation LabVIEW, couvrant l'interface utilisateur, les types de données, la gestion des fichiers et la gestion des erreurs.
Couvre les techniques de réduction de dimensionnalité telles que PCA et LDA, les méthodes de clustering, l'estimation de la densité et la représentation des données.
Couvre l'apprentissage non supervisé axé sur les méthodes de regroupement et les défis rencontrés dans les algorithmes de regroupement comme K-means et DBSCAN.
Couvre la théorie et la pratique des algorithmes de regroupement, y compris PCA, K-means, Fisher LDA, groupement spectral et réduction de dimensionnalité.
Couvre l'apprentissage non supervisé, en mettant l'accent sur la réduction de la dimensionnalité et le regroupement, en expliquant comment il aide à trouver des modèles dans les données sans étiquettes.