Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.
Couvre les exercices sur le théorème de Bayes, les fonctions génératrices de moment, le nombre de photons, les probabilités de maladie et les propriétés de distribution.
Discute des concepts statistiques clés, y compris les dangers d'échantillonnage, les inégalités et le théorème de la limite centrale, avec des exemples pratiques et des applications.
Explore des modèles stochastiques pour les communications, couvrant la moyenne, la variance, les fonctions caractéristiques, les inégalités, diverses variables aléatoires discrètes et continues, et les propriétés de différentes distributions.