Explorer l'interprétation des modèles de régression logistique, l'estimation des paramètres et la comparaison des modèles à l'aide de tests de rapport de probabilité.
Explore les modèles paramétriques dans l'analyse des données, couvrant les estimateurs de régression, les problèmes d'optimisation et les modèles statistiques.
Fournit un aperçu des modèles linéaires généralisés, en mettant l'accent sur les modèles de régression logistique et de Poisson, et leur mise en oeuvre dans R.
Couvre des modèles thématiques, en se concentrant sur l'allocation de Dirichlet latente, le regroupement, les MGM, la distribution de Dirichlet, l'apprentissage LDA et les applications en humanités numériques.