Introduit une régression linéaire simple, les propriétés des résidus, la décomposition de la variance et le coefficient de détermination dans le contexte de la loi d'Okun.
Couvre la régression linéaire, de lélaboration de questions de recherche à linterprétation de R-carré et en ajoutant des prédicteurs pour améliorer le modèle.
Couvre les bases de la régression linéaire et la façon de résoudre les problèmes d'estimation en utilisant les moindres carrés et la notation matricielle.
Couvre les bases de la régression linéaire, la méthode OLS, les valeurs prédites, les résidus, la notation matricielle, la bonté d'adaptation, les tests d'hypothèse et les intervalles de confiance.
Explore les fondamentaux de la régression linéaire, la formation des modèles, l'évaluation et les mesures du rendement, en soulignant l'importance de la R2, du MSE et de l'EAM.