Couvre les valeurs propres, les vecteurs propres et la séquence de Fibonacci, en explorant leurs propriétés mathématiques et leurs applications pratiques.
Couvre le théorème du point fixe et la convergence de la méthode de Newton, en soulignant l'importance du choix de la fonction et du comportement de la dérivée pour une itération réussie.
Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.
Explore les valeurs propres, les vecteurs propres et les méthodes de résolution de systèmes linéaires en mettant l'accent sur les erreurs d'arrondi et les matrices de préconditionnement.