Explore la méthode des moments, le compromis biais-variance, la cohérence, le principe de plug-in et le principe de vraisemblance dans lestimation de point.
Explore l'estimation ponctuelle dans les statistiques, en discutant du biais, de la variance, de l'erreur quadratique moyenne et de la cohérence des estimateurs.
Explore l'estimation statistique, comparant les estimateurs basés sur la moyenne et la variance, et plongeant dans l'erreur carrée moyenne et Cramér-Rao lié.
Explore le phénomène Stein, présentant les avantages du biais dans les statistiques de grande dimension et la supériorité de l'estimateur James-Stein sur l'estimateur de probabilité maximale.
Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
Couvre l'estimation de la vraisemblance maximale pour estimer les paramètres en maximisant la précision de la prédiction, en démontrant par un exemple simple et en discutant de la validité par le biais de tests d'hypothèses.