Couvre les premières propriétés de l'homologie singulière et la préservation des composants de décomposition et de chemin connectés dans les espaces topologiques.
Démontre l'équivalence entre l'homologie simpliciale et singulière, prouvant les isomorphismes pour les complexes s finis et discutant de longues séquences exactes.
Explore l'invariance de l'homotopie et son application à des groupes d'homologie de quotients, mettant en valeur l'isomorphisme et l'homotopie en chaîne.
Couvre l'homologie avec les coefficients, introduisant le concept de définition des groupes d'homologie par rapport aux groupes abélisques arbitraires.
Se penche sur les théorèmes des coefficients universels en algèbre homologique, montrant leur application pratique dans le calcul des groupes d'homologie et de cohomologie.