Couvre les bases de la programmation non linéaire et ses applications dans le contrôle optimal, en explorant des techniques, des exemples, des définitions d'optimalité et les conditions nécessaires.
Couvre le concept de couverture pour les programmes linéaires et la méthode simplex, en se concentrant sur la réduction des coûts et la recherche de solutions optimales.
Explore la maximisation des marges pour une meilleure classification à l'aide de machines vectorielles de support et l'importance de choisir le bon paramètre.