Discute de la série Laurent et du théorème des résidus dans l'analyse complexe, en se concentrant sur les singularités et leurs applications dans l'évaluation des intégrales complexes.
Discute de l'analyse complexe, en se concentrant sur le théorème des résidus et les transformées de Fourier, avec des exercices pratiques et des applications dans la résolution des équations différentielles.
Explore les domaines simplement connectés dans l'analyse complexe, y compris les fonctions holomorphiques, la formule intégrale de Cauchy, et la série Taylor.
Explore les singularités essentielles et le calcul des résidus dans une analyse complexe, en soulignant la signification de coefficients spécifiques et la validité des intégrales.