Couvre la minimisation empirique des risques, l'apprentissage statistique et des exemples de prédiction du cancer, de prix des maisons et de génération d'images.
Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.
Explore l'apprentissage par renforcement profond basé sur des modèles, en se concentrant sur Monte Carlo Tree Search et ses applications dans les stratégies de jeu et les processus décisionnels.
S'insère dans la dynamique de l'apprentissage collectif avec exploitation de la similitude, couvrant l'apprentissage structuré, les cadres d'adaptation, la modélisation, la simulation et les résultats expérimentaux.
Explore l'apprentissage profond pour les véhicules autonomes, couvrant la perception, l'action et les prévisions sociales dans le contexte des technologies de capteurs et des considérations éthiques.