Introduit l'apprentissage par renforcement, couvrant ses définitions, ses applications et ses fondements théoriques, tout en décrivant la structure et les objectifs du cours.
Discute de la navigation par quadritor en utilisant l'apprentissage de renforcement profond et le contrôle de bas niveau, en mettant l'accent sur l'intelligence visuelle et la robustesse du modèle de regard.
Explore les produits intelligents et connectés et leur impact transformateur sur les entreprises, couvrant l'intelligence artificielle, l'apprentissage automatique, les modèles prédictifs, les méthodes de prévision et plus encore.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Explore l'apprentissage sécuritaire en robotique, couvrant l'état de l'art, les défis ouverts et la vision sur le terrain, soulignant l'importance de la collaboration interdisciplinaire.
Explore l'apprentissage et le contrôle adaptatif pour les robots, en mettant l'accent sur les défis, la planification de parcours avec des systèmes dynamiques, et les applications de planification en temps réel.
Explore le transfert des principes d'apprentissage humain aux robots, en mettant l'accent sur la manipulation de l'apprentissage des compétences et la planification des tâches.