Couvre l'exponentielle des opérateurs et des matrices, les propriétés de commutation, la forme normale de la Jordanie et les concepts d'algèbre linéaire liés aux opérateurs linéaires et aux problèmes de valeurs propres.
Couvre la théorie et les exemples de matrices de diagonalisation, en se concentrant sur les valeurs propres, les vecteurs propres et lindépendance linéaire.
Explore les valeurs propres, les vecteurs propres et les méthodes de résolution de systèmes linéaires en mettant l'accent sur les erreurs d'arrondi et les matrices de préconditionnement.