Couvre les méthodes numériques pour résoudre les problèmes de valeurs limites en utilisant des méthodes de différence finie, de FFT et d'éléments finis.
Introduit la méthode de différence finie pour l'approximation des dérivés et la résolution des équations différentielles dans les applications pratiques.
Explore les propriétés spectrales des systèmes illimités et bornés en utilisant les méthodes de Fourier et souligne l'importance de choisir la représentation correcte pour différentes conditions aux limites.
Explore la résolution du problème Poisson en utilisant la transformée de Fourier, en discutant des termes sources, des conditions aux limites et de l'unicité de la solution.
Explore la méthode de séparation des variables pour résoudre des équations aux dérivées partielles avec des conditions aux limites et discute des propriétés de convergence des fonctions dans différents espaces.