Couvre l'utilisation de transformateurs en robotique, en se concentrant sur la perception incarnée et les applications innovantes dans la locomotion humanoïde et l'apprentissage du renforcement.
Explore les sujets d'apprentissage avancés du renforcement, y compris les politiques, les fonctions de valeur, la récursion de Bellman et le contrôle de la TD sur les politiques.
S'engager dans la réduction des risques de catastrophe par la préparation, en mettant l'accent sur la coordination et la technologie pour la résilience.
S'insère dans le compromis entre la complexité du modèle et le risque, les limites de généralisation, et les dangers d'un ajustement excessif des classes de fonctions complexes.
Explore les robots d'entraînement en renforçant l'apprentissage et l'apprentissage de la démonstration, mettant en évidence les défis de l'interaction homme-robot et de la collecte de données.