Explore les principes fondamentaux de la recherche scientifique, de l'impact des ordinateurs, des algorithmes numériques et de l'apprentissage profond dans la résolution de problèmes de haute dimension.
Explore l'intersection entre l'apprentissage automatique et la cryptographie, en mettant l'accent sur l'apprentissage automatique sûr à travers des outils et des modèles cryptographiques.
Par le Prof. Bin Yu explore la science des données véridiques, mettant l'accent sur l'analyse responsable, fiable et reproductible des données et la prise de décisions.
Explore l'intelligence, la perception et les applications de l'IA dans les véhicules autonomes, en mettant l'accent sur la pensée rationnelle et l'intelligence sociale.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.
Explore la modélisation basée sur les données de l'hémodynamique dans les flux vasculaires, en mettant l'accent sur les défis informatiques, la modélisation de l'ordre réduit, les problèmes de FSI et les applications de réseaux neuronaux.
Couvre la cartographie de la susceptibilité aux feux de forêt à l'aide de la robotique ML-Al et de divers sujets connexes, y compris les protocoles expérimentaux, l'ingénierie des fonctions DFT, SimpedCLIP et la détection de Covid-19.
Explore l'apprentissage autosupervisé pour les véhicules autonomes, en dérivant des étiquettes de données elles-mêmes et en discutant de ses applications et de ses défis.