Explore l'échantillonnage de l'ensemble canonique, les fluctuations de température, le contrôle lagrangien étendu et la dynamique moléculaire de la température.
Couvre les bases des simulations de dynamique moléculaire, des propriétés d'ensemble, des formulations de mécanique classique, de l'intégration numérique, de la conservation de l'énergie et des algorithmes de contrainte.
Couvre la théorie et les aspects pratiques des simulations de Monte Carlo en dynamique moléculaire, y compris les moyennes d'ensemble et l'algorithme Metropolis.
Explore les chaînes Markov, Metropolis-Hastings, et la simulation à des fins d'optimisation, soulignant l'importance de l'ergonomie dans la simulation variable efficace.
Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.
Couvre les méthodes de calcul des systèmes moléculaires à température finie, en mettant l'accent sur l'échantillonnage stochastique et les simulations d'évolution du temps.