Contrôle gaussien quadratique linéaire : filtre de Kalman et contrôle de LQG
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le filtre Kalman pour l'estimation et la prédiction de l'état dans un cadre gaussien linéaire, en mettant l'accent sur l'optimalité du prédicteur et du filtre.
Couvre les variables aléatoires gaussiennes, les transformations d'affines et les systèmes linéaires entraînés par le bruit gaussien dans le contrôle multivariable.
Explore les applications du filtrage de Kalman dans les systèmes de contrôle et de communication, en se concentrant sur l'estimation d'état et l'estimation de canal.
Explore l'algorithme Kalman Predictor étendu et le filtre Kalman linéaire pour les systèmes de contrôle multivariables, en discutant des défis et des applications.
Explore la théorie du filtrage Kalman, en mettant l'accent sur les innovations, les prédictions et les applications pratiques dans l'estimation de la position et de la vitesse du véhicule.
Couvre les bases du contrôle multivariable, y compris la modélisation du système, le contrôle de la température, et les stratégies optimales, soulignant l'importance d'envisager toutes les entrées et sorties simultanément.
Explore l'estimation de l'état et le filtrage Kalman pour les systèmes de commande multivariables, avec des applications dans les canaux de communication et la navigation du véhicule.
Couvre la conception des estimateurs et des contrôleurs pour les systèmes multivariables, en mettant l'accent sur l'estimation de l'état et le rejet des perturbations.