Couvre la modélisation mathématique en chimie et en biologie, y compris les réactions chimiques, la cinétique enzymatique et la dynamique des populations.
Explore l'analyse numérique des équations non linéaires, en mettant l'accent sur les critères de convergence et les méthodes comme la bisection et l'itération à point fixe.
Introduit des points d'équilibre et des bifurcations dans les équations différentielles, en discutant de leur stabilité et de leur pertinence dans divers contextes.
Couvre les méthodes de résolution d'équations non linéaires, y compris les méthodes de bisection et de Newton-Raphson, en mettant l'accent sur les critères de convergence et d'erreur.