Couvre la théorie du traitement du signal numérique, y compris l'échantillonnage, les méthodes de transformation, la numérisation et les contrôleurs PID.
Explore la modélisation des signaux neurobiologiques avec les chaînes Markov, en mettant l'accent sur l'estimation des paramètres et la classification des données.
Explore les chaînes de Markov et leurs applications dans des algorithmes, en se concentrant sur l'impatience des utilisateurs et la génération d'échantillons fidèles.
Couvre les inégalités de concentration et les méthodes d'échantillonnage pour estimer les distributions inconnues, en mettant l'accent sur les taux d'infection de la population.
Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.