Couvre le concept d'un sous-espace étant un retrait d'un autre espace et des groupes fondamentaux, y compris des exemples comme la contraction des dents d'un collier.
Explore la théorie de l'homotopie des complexes de chaînes, en se concentrant sur les catégories de modèles, les équivalences faibles, et l'axiome de rétractation.
Explore l'invariance de l'homotopie, en mettant l'accent sur la préservation des propriétés sous des fonctions continues et leur relation avec les espaces topologiques.
Explore la construction d'objets cylindres dans des complexes de chaîne sur un champ, en mettant l'accent sur les complexes d'homotopie gauche et de chaîne d'intervalle.
Couvre les objets fibreux, le levage des cornes, et l'adjonction entre quasi-catégories et complexes kan, ainsi que la généralisation des catégories et complexes kan.