Explore l'analyse de convergence de la méthode de Newton pour résoudre les équations non linéaires, en discutant des propriétés de convergence linéaire et quadratique.
Couvre le concept de descente de gradient dans les cas scalaires, en se concentrant sur la recherche du minimum d'une fonction en se déplaçant itérativement dans la direction du gradient négatif.
Explore la convergence des algorithmes Langevin Monte Carlo dans des taux de croissance et des conditions de douceur différents, mettant l'accent sur une convergence rapide pour une large classe de potentiels.
Couvre les méthodes de résolution d'équations non linéaires, y compris les méthodes de bisection et de Newton-Raphson, en mettant l'accent sur les critères de convergence et d'erreur.