Explore les concepts avancés de coloration graphique, y compris la coloration plantée, le seuil de rigidité, et les variables gelées en points fixes BP.
Couvre la théorie et la pratique des algorithmes de regroupement, y compris PCA, K-means, Fisher LDA, groupement spectral et réduction de dimensionnalité.
Couvre les techniques de réduction de dimensionnalité telles que PCA et LDA, les méthodes de clustering, l'estimation de la densité et la représentation des données.
Couvre la classification des images, le clustering et les techniques d'apprentissage automatique telles que la réduction de la dimensionnalité et l'apprentissage par renforcement.
Couvre les principes et les méthodes de regroupement dans l'apprentissage automatique, y compris les mesures de similarité, la projection de l'APC, les moyennes K et l'impact de l'initialisation.
Explique le regroupement des moyennes k, en attribuant des points de données à des grappes en fonction de la proximité et en minimisant les distances carrées à l'intérieur des grappes.