Couvre les modèles linéaires, y compris la régression, les dérivés, les gradients, les hyperplans et la transition de classification, en mettant laccent sur la minimisation des risques et des mesures dévaluation.
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.
Couvre les méthodes d'interpolation déterministe globale et locale dans les systèmes d'information géographique, en discutant des connaissances spécialisées, de la sélection des méthodes et de l'estimation de l'incertitude.
Couvre la régression non paramétrique à l'aide de techniques d'estimation basées sur le noyau pour modéliser des relations complexes entre les variables.
Couvre les bases de la régression linéaire dans l'apprentissage automatique, y compris la formation des modèles, les fonctions de perte et les mesures d'évaluation.
Couvre la régression linéaire et pondérée, les paramètres optimaux, les solutions locales, l'application SVR et la sensibilité des techniques de régression.