Introduit le modèle relationnel, SQL, les clés, les contraintes d'intégrité, la traduction ER, les entités faibles, les hiérarchies ISA et SQL vs. noSQL.
Explore les caractéristiques de la turbulence, les méthodes de simulation et les défis de modélisation, fournissant des lignes directrices pour le choix et la validation des modèles de turbulence.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Couvre la simulation, la modélisation, les profils d'accélération, les fréquences naturelles, les calculs de rigidité et les solutions anti-résonance pour les robots multi-axes.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Souligne la reproductibilité et la réutilisabilité des données dans les neurosciences silico, en mettant l'accent sur les outils et les méthodes de neuroinformatique.