Les filtres convolutifs comme biais inductif pour les images
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'intelligence visuelle, la formation d'images, la vision par ordinateur et la compréhension de la représentation dans les machines et les esprits.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Explore l'évaluation de la précision et de la robustesse de la machine et de l'homme sur ImageNet, en soulignant les progrès, les défis et la nécessité d'améliorer.