Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.
Explore les méthodes de différenciation et d'intégration numériques, en mettant l'accent sur la précision des différences finies dans le calcul des dérivées et des intégrales.
Explore les méthodes d'intégration numérique et leur application dans la résolution d'équations différentielles et la simulation de systèmes physiques.
Couvre les méthodes numériques pour résoudre les équations différentielles et leur analyse de stabilité, en se concentrant sur le calcul des erreurs et les applications pratiques en ingénierie et en science.
Explore les méthodes numériques pour résoudre l'équation de Schrdinger en fonction du temps à l'aide de la représentation en grille et des algorithmes à opérateur divisé.