Couvre l'estimation conditionnelle maximale de la probabilité, la contribution à la probabilité et l'application du modèle de VEM dans les échantillons fondés sur le choix.
Introduit la probabilité, les statistiques, les distributions, l'inférence, la probabilité et la combinatoire pour étudier les événements aléatoires et la modélisation en réseau.
Explore la régression linéaire dans une perspective d'inférence statistique, couvrant les modèles probabilistes, la vérité au sol, les étiquettes et les estimateurs de probabilité maximale.
Explore linférence de vraisemblance maximale, comparant les modèles basés sur les ratios de vraisemblance et démontrant avec un exemple de pièce de monnaie.
Explore l'application de Maximum Likelihood Estimation dans les modèles à choix binaire, couvrant les modèles probit et logit, la représentation des variables latentes et les tests de spécification.
Explore l'inférence bayésienne pour la précision dans le modèle gaussien avec la moyenne connue, en utilisant un précédent Gamma et en discutant des précédents subjectifs vs objectifs.