Explore les modèles de mélange, y compris les mélanges discrets et continus, et leur application dans la capture de l'hétérogénéité du goût dans les populations.
Couvre la théorie derrière l'estimation maximale de la vraisemblance, en discutant des propriétés et des applications dans le choix binaire et des modèles multiréponses ordonnées.
Explore l'application de Maximum Likelihood Estimation dans les modèles à choix binaire, couvrant les modèles probit et logit, la représentation des variables latentes et les tests de spécification.
Explore l'optimisation convexe, les fonctions convexes et leurs propriétés, y compris la convexité stricte et la convexité forte, ainsi que différents types de fonctions convexes comme les fonctions et les normes affines linéaires.
Explore d'autres variances spécifiques dans les modèles de mélange et discute des questions d'identification et des comparaisons de modèles à l'aide de 500 dessins.
Introduit l'estimation bayésienne, qui couvre l'inférence classique par rapport à l'inférence bayésienne, les antécédents conjugués, les méthodes MCMC et des exemples pratiques comme l'estimation de la température et la modélisation de choix.
Couvre l'estimation conditionnelle maximale de la probabilité, la contribution à la probabilité et l'application du modèle de VEM dans les échantillons fondés sur le choix.
Explore l'interprétation des réponses binaires, les fonctions de liaison, la régression logistique et la sélection des modèles à l'aide de déviances et de critères d'information.