Introduit les bases de la programmation linéaire, y compris les problèmes d'optimisation, les fonctions de coût, l'algorithme simplex, la géométrie des programmes linéaires, les points extrêmes et la dégénérescence.
Couvre la modélisation et l'optimisation des systèmes énergétiques, en se concentrant sur la résolution de problèmes d'optimisation avec des contraintes et des variables.
Couvre des exercices sur l'optimisation convexe, en se concentrant sur la formulation et la résolution de problèmes d'optimisation en utilisant YALMIP et des solveurs comme GUROBI et MOSEK.
Explore les méthodes d'optimisation primal-dual, en mettant l'accent sur les techniques de gradient lagrangien et leurs applications dans l'optimisation des données.