Couvre les méthodes itératives pour résoudre des équations linéaires et analyser la convergence, y compris le contrôle des erreurs et les matrices définies positives.
Couvre la vectorisation en Python en utilisant Numpy pour un calcul scientifique efficace, en soulignant les avantages d'éviter les boucles et de démontrer des applications pratiques.
Explore l'analyse de convergence de la méthode de Newton pour résoudre les équations non linéaires, en discutant des propriétés de convergence linéaire et quadratique.
Explore l'analyse des flux non confinés en géomécanique, en mettant l'accent sur les méthodes itératives de solution et les considérations relatives à l'état des limites.
Couvre le concept de descente de gradient dans les cas scalaires, en se concentrant sur la recherche du minimum d'une fonction en se déplaçant itérativement dans la direction du gradient négatif.