Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.
Explore les modèles linéaires pour la classification, y compris les modèles paramétriques, la régression et la régression logistique, ainsi que les mesures d'évaluation des modèles et les classificateurs de marge maximum.
Explore le surajustement, la régularisation et la validation croisée dans l'apprentissage automatique, soulignant l'importance de l'expansion des fonctionnalités et des méthodes du noyau.
Explore la vérification du modèle et les résidus dans lanalyse de régression, en soulignant limportance des diagnostics pour assurer la validité du modèle.