Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.
Explore des méthodes numériques telles que Crank-Nicolson, Heun, Euler et RK4 pour résoudre les ODE, en mettant l'accent sur l'estimation des erreurs et la convergence.
Se concentre sur la modélisation numérique des processus atmosphériques pour prédire les phénomènes météorologiques et climatiques, couvrant les concepts et les méthodes clés.
Couvre les bases de l'analyse numérique et des méthodes de calcul utilisant Python, en se concentrant sur les algorithmes et les applications pratiques en mathématiques.