Discute de la rétroaction de l'évaluation, de la convergence, de l'analyse des erreurs et des étapes temporelles adaptatives dans les simulations physiques.
Explore des méthodes numériques telles que Crank-Nicolson, Heun, Euler et RK4 pour résoudre les ODE, en mettant l'accent sur l'estimation des erreurs et la convergence.
Couvre les formules de quadrature interpolatoires pour approximer des intégrales définies en utilisant des polynômes et discute du caractère unique des solutions et des applications pratiques en intégration numérique.
Explore la stabilité zéro et la stabilité absolue dans les méthodes numériques, y compris Forward Euler, Backward Euler, Crank-Nicolson, et les méthodes Heun.