Couvre les processus de Markov, les densités de transition et la distribution sous réserve d'information, en discutant de la classification des états et des distributions fixes.
Explore la similarité de la matrice, la diagonalisation, les polynômes caractéristiques, les valeurs propres et les vecteurs propres dans l'algèbre linéaire.
Explore les valeurs propres et les vecteurs propres dans l'algèbre linéaire 3D, couvrant les polynômes caractéristiques, la stabilité sous les transformations, et les racines réelles.
Couvre les systèmes de n ODE linéaires de premier ordre avec une matrice de couplage A constante et explore les propriétés des solutions et le principe de superposition.
Couvre la probabilité appliquée, les chaînes de Markov et les processus stochastiques, y compris les matrices de transition, les valeurs propres et les classes de communication.
Explore les valeurs propres, les vecteurs propres et les méthodes de résolution de systèmes linéaires en mettant l'accent sur les erreurs d'arrondi et les matrices de préconditionnement.