Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Explore la segmentation de l'image, les techniques de seuil, la segmentation de la texture et l'étiquetage des composants connectés dans le traitement de l'image.
Explore l'intelligence visuelle, la formation d'images, la vision par ordinateur et la compréhension de la représentation dans les machines et les esprits.
Explore la classification des images en utilisant des arbres de décision et des forêts aléatoires pour réduire la variance et améliorer la robustesse du modèle.
Introduit des bases d'apprentissage automatique, couvrant la segmentation des données, le regroupement, la classification, et des applications pratiques comme la classification d'image et la similarité du visage.
Couvre les concepts fondamentaux de l'apprentissage automatique, y compris la classification, les algorithmes, l'optimisation, l'apprentissage supervisé, l'apprentissage par renforcement et diverses tâches telles que la reconnaissance d'images et la génération de texte.