Explore les schémas de compression, la reconnaissance des textures, les patchs de plage, l'évolution et les variantes sur la persistance dans la topologie appliquée.
Couvre la preuve du théorème ARV de Bourgain, en se concentrant sur lensemble fini de points dans un espace semi-métrique et lapplication de lalgorithme ARV pour trouver la coupe la plus clairsemée dans un graphique.
Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Explore le transport optimal, les flux de gradient, le schéma implicite d'Euler et l'équation de la chaleur dans le contexte de la fonction d'énergie de Dirichlet.