Explore le théorème de Wedderburn, les algèbres de groupe et le théorème de Maschke dans le contexte des algèbres simples de dimension finie et de leurs endomorphismes.
Couvre les propriétés de la carte exponentielle dans les groupes de Lie et leurs algèbres, y compris la douceur et la relation entre les sous-groupes et les algèbres.
Couvre l'algèbre de Lie, les représentations de groupe, les groupes de symétrie et le lemme de Schur dans le contexte de la symétrie et des opérations de groupe.